This is a brief guide to the literature of the organic laser or organic lasers. The papers and books included refer to organic gain media as well as narrow-linewidth tunable laser oscillators engineered with organic gain media.
P. P. Sorokin and J. R. Landkard, Stimulated emission observed from an organic dye, chloro-aluminum phthalocyanine, IBM. J. Res. Devel. 10, 162-163 (1966).
F. P. Schäfer, W. Schmidt, J. Volze, Organic dye solution laser, Appl. Phys. Lett. 9, 306-309 (1966).
These efficient and compact dispersive laser oscillators have been shown to yield beam divergences ~ 1.5 times the diffraction limit and single-longitudinal-mode emission at laser linewidths of ~ 350 MHz. Emission pulses are in the ns regime at peak powers in the kW range. Continuous tunability has been demonstrated in the 550-600 nm region.
In these solid-state tunable lasers the gain medium is an organic-dye-doped polymer matrix. Usually this matrix is a highly homogenous form of poly(methyl-methacrylate) (PMMA). An additional example of a polymer used as matrix in the gain media of a tunable polymer laser is HEMA:MMA.
F. J. Duarte, Solid-state multiple-prism grating dye laser
oscillators, Appl. Opt. 33, 3857-3860 (1994).
F. J. Duarte, Solid-state dispersive dye laser oscillator: very
compact cavity, Opt. Commun. 117, 480-484 (1995).
F. J. Duarte, Multiple-prism near-grazing-incidence grating solid-state dye laser oscillator, Opt. Laser Technol. 29, 513-516 (1997).
F. J. Duarte, T. S. Taylor, A. Costela, I. Garcia-Moreno, and R. Sastre, Long-pulse narrow-linewidth dispersive solid-state dye-laser oscillator, Appl. Opt. 37, 3987-3989 (1998).
F. J. Duarte, Multiple-prism grating solid-state dye laser oscillator: optimized architecture, Appl. Opt. 38, 6347-6349 (1999).
F. J. Duarte, Multiple-return-pass beam divergence and the linewidth equation, Appl. Opt. 40, 3038 - 3041 (2001).
F. J. Duarte, Tunable Laser Optics (Elsevier Academic, New York, 2003) Chapter 7.
F. J. Duarte ans R. O. James, in Tunable Laser Applications, 2nd Ed. (CRC, New York, 2009) Chapter 4.
Solid-state organic laser incorporating a dye-doped-polymer gain medium in a multiple-prism near grazing-incidence
grating oscillator configuration. This oscillator is excited longitudinally (from Duarte, 1997).
Y. Oki et al., Long lifetime and high repetition rate operation from distributed feedback plastic waveguided dye lasers, Opt. Commun. 214, 277-283 (2002).
Y. Oki et al., Wide-wavelength range operation of a distributed-feedback
dye laser with a plastic waveguide, Jpn. J. Appl. Phys. 41,
6370-6374 (2002).
D. Gindre et al., Refractive-index saturation-mediated multiple line emission in polymer thin-film distributed- feedback lasers, Opt. Lett. 31, 1657-1659 (2006).
H. Watanabe et al., Picosecond-pulse-pumped distributed-feedback thick-film waveguide blue laser using fluorescent brightener 135, Jpn. J. Appl. Phys. 48, 072105 (2010).
Recent Advances in Solid-State Organic Gain Media
F. J. Duarte and E. J. A. Pope, Optical inhomogeneities in sol-gel derived ORMOSILS and nanocomposites, Ceramic Transactions 55, 267-273 (1995).
A. Maslyukov et al., Solid state dye laser with modified poly(methyl methacrylate)-doped active elements, Appl. Opt. 34, 1516-1518 (1995).
R. Gvishi et al., New laser medium: dye-doped sol-gel fiber, Opt. Commun. 126, 66-72 (1996).
G. D. Peng et al., Broadband tunable optical amplification in rhodamine B-doped step-index polymer optical fibre, Opt. Commun. 129, 353-357 (1996).
W. Holzer et al., Photo-physical characterization of rhodamine 6 G in a 2-hydroxyethyl methacrylate methyl methacrylate copolymer, Chem. Phys. 256, 125-136 (2000).
F. J. Duarte and R. O. James, Tunable solid-state lasers incorporating dye-doped polymer-nanoparticle gain media, Opt. Lett. 28, 2088-2090 (2003).
A. Costela el at., Silicon-containing organic matrices as hosts for highly photostable solid-state dye lasers,
Appl. Phys. Lett. 85, 2160-2162 (2004).
H. Watanabe et al., Waveguide dye laser including a SiO2
nanoparticle-dispersed random scattering active media, Appl. Phys. Lett.
86, 151123 (2005).
A. Costela el at., Highly photostable solid-state dye lasers based on silicon-modified organic matrices,
J. Appl. Phys. 101, 073110 (2007).
O. García et al., Synthetic strategies for hybrid materials to improve properties for optoelectronicc applications, Adv. Funct. Mater. 18, 2017-2025 (2008).
F. J. Duarte and R. O. James, Tunable lasers based on dye-doped polymer gain media incorporating homogeneous distributions of functional nanoparticles, in Tunable Laser Applications, 2nd Ed. (CRC, New York, 2009) Chapter 4.
A. Costela, I. García-Moreno, L. Cerdan, V. Martín, O. García, and R. Sastre, Dye-doped POSS solutions: random nanomaterials for laser emission, Adv. Mat. 21, 1-4 (2009).
R. Sastreet al., Dye-doped polyhedral oligomeric silsesquioxane (POSS)-modified polymeric matrices for highly-efficient and photostable solid-state dye lasers, Adv. Funct. Mater. 19, 3307-3319 (2009).
X. Liu et al., Microcavity organic laser device under electrical pumping, Opt. Lett. 34, 503-505 (2009) [Note: a commentary to this paper has been published by I. D. W. Samuel et al., Nat. Photon. 3, 546-549 (2009)].