ISBN: 978-0-7503-3405-1
Quantum Entanglement Engineering and Applications (Institute of Physics, Bristol, 2021) at Amazon
Quantum Entanglement Engineering and Applications (Institute of Physics, Bristol, 2021) at IoP
Watch interview on Quantum Entanglement Engineering and Applications in youtube (English)
Watch interview on Quantum Entanglement Engineering and Applications in youtube (Spanish)
Article on Quantum Entanglement Engineering and Applications at Physics World
1.1 Introduction
1.2 Essentials of quantum mechanics
1.2.1 The quantum photon
1.2.2 Planck’s constant: h
1.3 Ward’s perspectives
1.4 The philosophy and the physics of quantum entanglement
1.4.1 The philosophy
1.4.2 The physics
1.5 Quantum entanglement as a discipline
1.6 Quantum entanglement engineering and applications
1.7 Intent
Problems
References
2.1 Introduction
2.2 Dirac’s bra ket notation
2.3 Dirac’s notation in N-slit interferometers
2.4 Semi coherent interference
2.5 Expanded series of N-slit quantum interference probabilities
2.6 From quantum probabilities to measurable intensities
2.7 Dirac identities
2.8 Quantum entanglement probability amplitudes for n = N = 2
2.9 Quantum entanglement probability amplitudes for n = N = 4
2.10 Quantum entanglement probability amplitudes for n = N = 8
2.11 Quantum entanglement probability amplitudes for n = N = 16
2.12 Quantum entanglement probability amplitudes for n = N = 21,22 ,23,24...2r
2.13 Quantum entanglement probability amplitudes for n = N = 3
2.14 Quantum entanglement probability amplitudes for n = N = 6
2.15 Beyond single quanta-pair quantum entanglement
2.16 Discussion
Problems
References
3.1 Introduction
3.2 Indistinguishability in quantum interference
3.3 Indistinguishability in Dirac’s identities
3.4 Indistinguishability in quantum entanglement
3.5 Indistinguishability in quantum ensembles
3.6 Discussion
Problems
References
4.1 Introduction
4.2 The N-slit interferometer
4.3 Interferometers configured by beam splitters
4.3.1 The single beam splitter
4.3.2 The Mach-Zehnder interferometer
4.3.3 The Michelson interferometer
4.3.4 The Sagnac interferometer
4.4 Beam splitter matrices and Dirac’s bra ket notation
4.4.1 The beam splitter and the Hadamard gate
4.5 Revisiting the single beam splitter
Problems
References
5.1 Introduction
5.2 Vector basics
5.3 Vector products
5.3.1 Dot product
5.3.2 Cross product
5.3.3 The ket bra product
5.3.4 Vector direct product
5.3.5 Vector outer product
5.4 Matrix algebra
5.4.1 The identity matrix
5.4.2 The inverse matrix
5.4.3 Matrix determinant and trace
5.4.4 Eigenvalues and eigenvectors
5.5 The Pauli matrices
5.5.1 Eigenvalues of the Pauli matrices
5.6 Unitary matrices
5.7 The tensor product
Problems
References
6.1 Introduction
6.2 Ward’s heuristic derivation
6.2.1 The quantum entanglement probability
6.3 Quantum entanglement from Feynman’s two state approach
6.4 Quantum entanglement from N-slit interference
6.5 Quantum entanglement from the Pauli matrices
6.6 Quantum entanglement from the Hadamard gate
6.7 Quantum interference or quantum entanglement?
Problems
References
7.1 Introduction
7.2 Quantum entanglement probability amplitudes
7.3 From ket vectors to polarization matrices
7.4 The Pauli matrices and quantum entanglement
7.5 The Hadamard matrix
7.5.1 Derivation of the matrix for the Hadamard gate
7.6 Optical matrices based on the probability amplitudes of quantum entanglement
7.7 Polarization rotators for quantum entanglement
7.7.1 Wave plates
7.7.2 Rhombois
7.7.3 Prismatic rotators
7.8 Quantum operations with polarization rotators
7.9 Quantum operations with the Hadamard gate
Problems
References
8.1 Introduction
8.2 Classical cryptography concepts
8.3 Quantum entanglement applications to cryptography
8.3.1 Quantum key distribution (QKD)
8.3.2 Experiments
8.3.3 All-quantum security protocol
8.4 Quantum entanglement applications to teleportation
8.4.1 Mathematical methodology
8.4.2 Technology
8.5 Quantum computing
8.51 The Pauli gates
8.5.2 The Pauli-X gate and quantum entanglement
8.5.3 The Hadamard gate and quantum entanglement
8.5.4 Technology
8.6 Quantum entanglement applications to metrology
8.7 Overview
Problems
References
9.1 Introduction
9.2 Relevant satellite engineering parameters
9.3 Beam divergence
9.4 Optical configuration for quantum satellite communications
9.4.1 Satellite-satellite
9.4.2 Earth-space-Earth
9.5 Existing data from experiments on quantum satellite communications
9.5.1 The Delingha-Lijiang experiment
9.5.2 The International Space Station experiment
9.6 Satellite networks and their dependence on entangled photon source characteristics
9.6.1 The quantum repeater and quantum data teleportation
9.7 Sources for quantum entanglement communications
9.8 Outlook
Problems
References
10.1 Introduction
10.2 Many alternative interpretations
10.3 Guidance from quantum titans
10.3.1 Dirac
10.3.2 Feynman
10.3.3 Dyson
10.3.4 Lamb
10.3.5 Ward
10.4 Hidden variable theories
10.4.1 Bohm’s hidden variable theories
10.4.2 Bell’s theorem
10.4.3 Comment on the EPR paper
10.5 A pragmatic perspective on the interpretations of quantum mechanics
10.6 Quantum principles
10.7 Quantum measurements
10.7.1 Dyson’s first layer quantum mechanics
10.7.2 Dyson’s second layer quantum mechanics
10.7.2.1 Time flow
10.7.3 Quantum measurement sequence
10.7.4 Quantum entanglement measurements
10.7.5 The observer
10.7.6 On ‘the collapse of the wave function’
10.8 Is quantum entanglement the essence of quantum mechanics?
10.9 On the origin of the Dirac-Feynman principle
10.10 Quantum pragmatism free of paradoxes
Problems
References
A.1 Introduction
A.2 The cavity linewidth equation: a heuristic approach
A.3 The cavity linewidth equation: an interferometric approach
A.4 Coherent electrically-pumped organic interferometric emitters
A.4.1 Coherence
A.4.2 The quantum perspective
A.5 Quantum interference to classical interference
A.5.1 Classical interference
A.5.2 Quantum interference
A.6 Intracavity double-mode beating instability
A.6.1 Alternative double-mode instability characterization
A.7 Dirac’s ‘coincidences’
Problems
References
Page published on the 20th of September, 2021
Updated on the 20th of September, 2019