F. J. Duarte, Laser Physicist (Optics Journal, Rochester, New York, 2012)

ISBN: 978-0-9760383-1-3 (printed version)

ISBN: 978-0-9760383-2-0 (electronic version)

Laser Physicist Corrigenda

Laser Physicist provides a first hand account of academic politics at Australia's Macquarie University during the "revolt of the sciences" that led to the reform of its degree structure. The description then extends to academic laser research and the author's transition to the United States via a major Southern university. The author, a real life laser physicist, then offers a rare insider's view of high-power laser research at the height of the Cold War, during Reagan's Strategic Defense Initiative. Laser Physicist then gives the reader an overview of industrial research in America. This is done from the vantage point of a major industrial icon, Eastman Kodak, at its pinnacle, and describes the transition of this icon towards decline and virtual oblivion. Abundant use of anecdotes, and interaction with major physics figures of the quantum era, illustrate the finer points. Academic, industrial, and wider experiences lead the author to reflect on issues of life and ethics. His thoughts on a series subjects ranging from the beauty of physics, quantum mechanics, the emergence of nanogods, to what he calls the "big question" are expressed in a series of readable short essays and sketches.

Laser Physicist (paperback edition) available at Amazon

Laser Physicist (Kindle edition) available at Amazon


Some excerpts from Laser Physicist ©

Chapter 3: Macquarie

In his memoirs, John Ward makes reference to my political contacts (Ward, 2004). I never explained to him, or any one else, how these contacts came about. It is fair to say that at any one time during this period I was the only one who knew all the protagonists involved and how all the connections fit together. (Page 37)

Chapter 4: John Cive Ward

John openly discouraged his physics students from pursuing a theoretical career… As such, he never took a Ph.D. student despite open efforts by some brilliant mathematicians to study under him. More explicitly, John was highly critical of “Ph.D. factories” in theoretical physics. On various occasions he used the word “rackets” to refer to some of these establishments. (Page 61)

His directness and frankness often got him at odds with managers and administrators. This was the case at Macquarie where he openly and publicly criticized the status quo and the large education establishment. (Page 63)

Chapter 4: Lasers and the Cold War

Edward Teller arrived late morning on Wednesday (December 9, 1987) for the panel discussion held that afternoon. His entrance to the main conference auditorium, surrounded by a praetorian guard, was quite a sight and something that I have never seen in a physics setting again. (Page 94)

The conference place in Zelenograd was no Uzkoye. This was a dark cold place. It had long obscure corridors and a heavy, nasty, atmosphere. The rooms were bare concrete. That night I slept with my clothes on, including my boots. Next day, breakfast: a hard piece of dark meat… only God knew what from, yellow grease milk, some bread and tea. (Page 106)

Chapter 7: Eastman's

7.2 Arrival

Up on arrival, I was set up with a spacious laboratory with flat black walls and two large optical tables. The laboratory was promptly equipped to my specifications and taste. At the time, managers were all well-known senior scientists in their respective fields. The managerial structure tended to be horizontal so that they were relatively few and wise. (Page 115)

7.10 Strategic moves

Film versus digital: many colleagues, and commentators in the press, believe that the delay to embrace digital was what caused the company’s decline. To blame digital technology for the failure is a misguided excuse. Many companies made a successful transition from the analog era to the digital age initiated by the invention of the CCD detector. These companies include Canon, Nikon, Leica, and yes, Fuji Film. Although failure to dominate digital technology added to the decline… (Page 135)

... it appears that Fuji Film will end up as the sole beneficiary of this American technology. (Page 136)

7.11 Transformation

In 2005 the hypothesis of a "flat world" was used to support the vision behind the... "digital transformation." The notion of a flat world is completely erroneus even in a metaphorical sense. (Page 137)

By the summer of 2007... nearly 80 buildings had already been demolished. This gave an ironic twist to the notion of a "flat world." (Page 138)

How many broken homes? How many foreclosures? How many suicides? Probably, we'll never know. (Page 138)

7.12 Back to research

Incidentally, during this period it was recommended that I should give a talk to some production and business managers on the new laser materials Bob and I had just discovered and patented (Duarte and James, 2003, 2004). They needed new products, I was told. As I began my talk, I was questioned by a particular manager about organizational issues, rather aggressively. Since the questions were not technical, and framed in an antagonistic tone, I declined to answer them and proceeded to leave the meeting. The talk did not even last one minute, the shortest talk of my career! … Later, after returning from a trip, I learned that the poor manager that questioned me… had died of a heart attack. (Page 141)

Following the banishing of books I concluded there was no future for research, at the new transformed entity, which by now, with its limited vision, considered inkjet printing as the new frontier. To me this meant little hope of a turnaround. (Page 142)

Chapter 8: Reflections I

Dirac said that in his time it was easy for “second grade physicists to do first grade physics” and today “is very difficult for first grade physicists to do second grade physics” (Dirac, 1975). I agree. No physics development, since the quantum revolution, rivals the brilliance or importance of quantum mechanics. (Page 153)

The Earth was struck by a giant asteroid some sixty five million years ago. It was that collision that wiped out the dinosaurs, it was that collision that eventually gave us a chance. Without that miraculous collision the Earth would belong to the reptiles. (page 168)

Here, I provide a wish list of what I would like to see in the future. (page 181)

5. Bloodless surgery, and bloodless amputations, via the correct, widespread, standard, and skillful, use of lasers.

14. Description of all measurable physical phenomena via quantum mechanics.

15. Directed energy weapons to protect the planet.

16. Complete theoretical understanding of the weather.

Chapter 9: Reflections II

Dirac was not impressed by discussions on the interpretation of quantum mechanics and in one of his last papers he wrote: “The interpretation of quantum mechanics has been dealt with by many authors, and I do not want to discus it here. I want to deal with more fundamental things” (Dirac, 1987). (Page 201)

As a physicist, besieged by doubt and at the same time motivated by doubt, I think that Planck’s and Feynman’s duality is perfectly acceptable. However, at the same time, I find Schrödinger’s observation “A mathematical truth is timeless, it does not come into being when we discover it…” (Schrödinger, 1992) rather humbling and profoundly inspiring. (Page 214)


"I bought this book in order to read a particular chapter and read it first then went back to the rest of the book. It was all a good. It is funny and serious and also a historic record of turning points of change in a country, a university, the cold war and industrial life... For school students wishing to take up a career in engineering it would not harm you to read this book. It is an easy read with funny anecdotes and longer personal recollections of specific periods of change in academia and industry... Not many people get to thank those folk who help shape his life and this is that story with detailed notes and referrals at the end. It is as if an engineer got to write an autobiography, an interesting one, told with humour, one you can believe..."

Pacific North West Fan (Amazon, UK)

"I have recently completed reading Laser Physicist and found it entirely enjoyable... Frank is the real deal - he has spent his life as a working scientist and is widely published... In the book we learn of Frank's upbringing and education, his move to the US and employment at Kodak, and about the variously famous and influential people he has worked with. We also get a glimpse into his musings on subjects outside of physics - always interesting as his is an extraordinarily analytic mind. Any of us who worked at Kodak in the 80's will recognize some of the folks mentioned in those chapters, and will likely share in some of the observations made in the text... The reader will learn about... the nature of scientific discovery as experienced by the author. All in all a worthwhile read."

Roger the Consultant (Amazon, USA)

Name Index

H. Ackland, W. G. Ahearn, R. A. Aitchison, H. R. Aldag, L. W. Alvarez, P. W. Anderson, R. J. Andrews, V. V. Apollonov, L. Arnold, V. Y. Baranov, J. H. Bartlett, N. G. Basov, R. Bass, M. Batley, A. G. Bell, J. S. Bell, R. D. Bell, H. Bethe, E. Bleuler, N. Bloembergen, W. E. Boeing, D. Bohm, N. Bohr, M. Born, E. P. Brandeau, M. Brandt, C. A. Brau, R. G. Briggs, E. V. Browell, E. Brown, P. G. Browne, A. Budgor, B. Bulliman, C. Burak, H. S. Carslaw, J. M. Carrera, J. L. Carrick, C. Chandler, N. Cheburkin, R. Chiao, F. Chong, N. Chrushev, B. M. N. Clarke, J. Cleese, R. W. Conrad, C. D. H. Cooper, J. V. Corbett, K. Corcoran, V. J. Corcoran, A. Costela, P. W. Coulter, C. E. Curnow, R. H. Dalitz, V. Danilychev, W. E. Davenport, J. Davidson, M. de Andrade, M. de Cervantes, P. de Valdivia, D. Deutsch, J. C. Diels, P. A. M. Dirac, J. Donaldson, T. J. Dougherty, R. W. P. Drever, J. Drouin, F. J. Duarte, L. E. Duarte, F. J. Dyson, G. W. Eastman, M J. Edgeloe, T. A. Edison, J. J. Ehrlich, A. Einstein, K. Eisenhauer, P. N. Everett, H. Everett, A. J. Farrow, G. B. Ferrow, R. P. Feynman, G. M. Fisher, G. C. Fletcher, C. P. Foley, R. L. Fork, R. H. Fowler, G. Fraser, M. Fraser, T. E. Freeman, P. French, K. Fujii, G. Galileo, M. Golding, L. Goldman, M. Gorbachev, R. Gorbachyova, B. Gray, N. Griff, G. Gursslin, I. L. Guy, J. L. Hall, W. R. Hamilton, J. D. Hammond, D. C. Hanna, T. W. Hänsch, R. C. Hapeman, S. Haroche, S. E. Harris, J. Hawke, S. Hawking, W. Heisenberg, B. Hill, I. Hill, J. Hill, L. W. Hillman, L. W. Hollberg, J. Howard, F. Hoyle, H. Hutchinson, C. Huygens, K. S. Imrie, J. A. Ionson, I. C. Jaeger, R. O. James, T. H. Johnson, C. Jones, D. Kaiser, A. R. Kantrowitz, W. Keen, H. J. Kimble, J. A. Kinard, F. K. Kneubuhl, H. S. Kragh, E. Laisk, W. E. Lamb, L. S. Liao, J. Liggins, G. MacKellar, S. Magee, M. Mansfield, L. C. Marquet, P. Mason, J. C. Maxwell, A. G. R. McIntosh, W. McMahon, R. W. McMillan, C. E. K. Mees, R. T. Menzies, J. A. Merrigan, A. Miller, A. M. Miller, J. Miller, J. W. Meyer, J. Moore, E. Moses, A. Moyal, J. E. Moyal, M. Musashi, L. M. Narducci, B. Newnam, M. Nentarz, G. Nutt, R. H. Nuttal, E. D. O’Keefe, B. J. Orr, D. Pace, D. J. Paine, J. A. Paisner, J. Pardo, S. L. Parulski, C. K. N. Patel, D. Patterson, W. Pauli, T. G. Pavlopoulos, D. A. Payne, S. S. Penner, O. G. Peterson, B. G. Pillans, J. A. Piper, P. Philiponet, M. Planck, S. Popov, A. Prat, S. Pringle, A. M. Prokhorov, G. Provest, M. H. L. Pryce, A. W. Pryor, N. F. Ramsey, C. Ray, R. Reagan, B. Reed, C. K. Rhodes, R. Roberts, J. A. Robertson, R. Robi, A. J. Rose, G. H. Rossmanith, A. Sakharov, A. Salam, R. Sastre, E. Schrödinger, J. S. Schwinger, M. O. Scully, W. Seka, R. C. Sepucha, T. C. Shay, G. Sheridan, W. T. Silfvast, H. S. Snyder, R. Sproull, R. H. Street, C. R. Stroud, J. W. Sulentic, R. C. Sze, C. R. Tallman, T. Tansley, T. S. Taylor, E. Teller, J. P. Terwilliger, R. H. Tipping, S-I. Tomonaga, N. Touchard, H. Tsuda, S. Tzu, J. Unsworth, K. M. Vaeth, A. J. van der Poorten, N. G. van Kampen, A. E. Vaughan, R. H. Vernon, C. R. Vidal, P. B. Visscher, W. F. Walls, H. Walther, C. P. Wang, J. C. Ward, C. E. Webb, E. C. Webb, J. Webb, J. P. Webb, C. E. Wieman, L. E. Wilson, D. J. Wineland, J. Whiteford, P. W. Wojciechowski, T. Wright, C. S. Wu, B. Yeltsin, J. Young, L. Young Lee, G. Yonas, M. Zawacki

Name Index (surname first)

Ackland, H., Ahearn, W. G., Aitchison, R. A., Aldag, H. R., Alvarez, L. W., Anderson, P. W., Andrews, R. J., Apollonov, V. V., Arnold, L., Baranov, V. Y., Bartlett, J. H., Basov, N. G., Bass, R., Batley, M., Bell, A. G., Bell, J. S., Bell, R. D., Bethe, H., Bleuler, E., Bloembergen, N., Boeing, W. E., Bohm, D., Bohr, N., Born, M., Brandeau, E. P., Brandt, M., Brau, C. A., Briggs, R. G., Browell, E. V., Brown, E., Browne, P. G., Budgor, A., Bulliman, B., Burak, C., Carslaw, H. S., Carrera, J. M., Carrick, J. L., Chandler, C., Cheburkin, N., Chiao, R., Chong, F., Chrushev, N., Clarke, B. M. N., Cleese, J., Conrad, R. W., Cooper, C. D. H., Corbett, J. V., Corcoran, K., Corcoran, V. J., Costela, A., Coulter, P. W., Curnow, C. E., Dalitz, R. H., Danilychev, V., Davenport, W. E., Davidson, J., de Andrade, M., de Cervantes, M., de Valdivia, P., Deutsch, D., Diels, J. C., Dirac, P. A. M., Donaldson, J., Dougherty, T. J., Drever, R. W. P., Drouin, J., Duarte, F. J., Duarte, L. E., Dyson, F. J., Eastman, G. W., Edgeloe, M. J., Edison, T. A., Ehrlich, J. J., Einstein, A., Eisenhauer, K., Everett, P. N., Everett, H., Farrow, A. J., Ferrow, G. B., Feynman, R. P., Fisher, G. M., Fletcher, G. C., Foley, C. P., Fork, R. L., Fowler, R. H., Fraser, G., Fraser, M., Freeman, T. E., French, P., Fujii, K., Galileo, G., Golding, M., Goldman, L., Gorbachev, M., Gorbachyova, R., Gray, B. F., Griff, N., Gursslin, G., Guy, I. L., Hall, J. L., Hamilton, W. R., Hammond, J. D., Hanna, D. C., Hänsch, T. W., Hapeman, R. C., Haroche, S., Harris, S. E., Hawke, J., Hawking, S., Heisenberg, W., Hill, B., Hill, I., Hill, J., Hillman, L. W., Hollberg, L. W., Howard, J., Hoyle, F., Hutchinson, H., Huygens, C., Imrie, K. S., Ionson, J. A., Jaeger, I. C., James, R. O., Johnson, T. H., Jones, C., Kaiser, D., Kantrowitz, A. R., Keen, W., Kimble, H. J., Kinard, J. A., Kneubuhl, F. K., Kragh, H. S., Laisk, E., Lamb, W. E., Liao, L. S., Liggins, J., MacKellar, G., Magee, S., Mansfield, M., Marquet, L. C., Mason, P., Maxwell, J, C., McIntosh, A. G. R., McMahon, W., McMillan, R. W., Mees, C. E. K., Menzies, R. T., Merrigan, J. A., Miller, A., Miller, A. M., Miller, J., Meyer, J. W., Moore, J., Moses, E., Moyal, A., Moyal, J. E., Musashi, M., Narducci, L. M., Newnam, B., Nentarz, M., Nutt, G., Nuttal, R. H., O’Keefe, E. D., Orr, B. J., Pace, D., Paine, D. J., Paisner, J. A., Pardo, J., Parulski, S. L., Patel, C. K. N., Patterson, D., Pauli, W., Pavlopoulos, T. G., Payne, D. A., Penner, S. S., Peterson, O. G., Pillans, B. G., Piper, J. A., Philiponet, P., Planck, M., Popov, S., Prat, A., Pringle, S., Prokhorov, A. M., Provest, G., Pryce, M. H. L., Pryor, A. W., Ramsey, N. F., Ray, C., Reagan, R., Reed, B., Rhodes, C. K., Roberts, R., Robertson, J. A., Robi, R., Rose, A. J., Rossmanith, G. H., Sakharov, A., Salam, A., Sastre, R., Schrödinger, E., Schwinger, J. S., Scully, M. O., Seka, W., Sepucha, R. C., Shay, T. M., Sheridan, G., Silfvast, W. T., Snyder, H. S., Sproull, R., Street, R. H., Stroud, C. R., Sulentic, J. W., Sze, R. C., Tallman, C. R., Tansley, T., Taylor, T. S., Teller, E., Terwilliger, J. P., Tipping, R. H., Tomonaga, S-I., Touchard, N., Tsuda, H., Tzu, S., Unsworth, J., Vaeth, K. M., van der Poorten, A. J., van Kampen, N. G., Vaughan, A. E., Vernon, R. H., Vidal, C. R., Visscher, P. B., Walls, W. F., Walther, H., Wang, C. P., Ward, J. C., Webb, C. E., Webb, E. C., Webb, J., Webb, J. P., Wieman, C. E., Wilson, L. E., Wineland, D. J., Whiteford, J., Wojciechowski, P. W., Wright, T., Wu, C. S., Yeltsin, B., Young, J., Young Lee, L., Yonas, G., Zawacki, M.

Partial Subject Index

Aldersmaston, APIA, Astronomy, AUS, Australian Atomic Energy Commission, Australian Institute of Physics, Australian Ministry of Defense, Bell’s inequalities, B.Sc., CCD, Chester Hill High School, China, Christianity, Climate change, CMOS, Coherent OLED emission, Cold War, Corruption, Cowan, Cultural revolution, Dalitz Plots, Dalitz Pairs, Digital, Dirac’s notation, Divine mathematician, Divinity, Duhamel’s Theorem, Dye laser, Dye Laser Principles, Eastman Chemical Company, Eastman’s Fine Chemicals, Eastman’s, Economics, Einstein’s special relativity, EPR paradox, Entropy, Ethics, Extraterrestrial life, Femtosecond laser, Feynman Lectures on Physics, Film, Fourier theory, Fuji Film, Future, Gulag, H-bomb, Heisenberg’s uncertainty principle, Hewlett-Packard, Higgs boson, High power dye lasers, High Power Dye Lasers, Iaido, Imaging, Imaging and Spectral Measurements, Indistinguishable photons, Inkjet printer, Interferometer, Interferometric equation, Interferometric Optics, Interferometry, Ising Model, Kodak bankruptcy, Laser conferences, Laser dye, Laser guide star, Laser isotope separation, Laser microscopy, Laser printers, Laser pulse compression, Laser oscillator, Laser research, Lewisham, Lorentz’s transformations, Macquarie B. Sc., Macquarie University, Maxwell’s equations, Measurement business, Medicine, Medpolymer Institute, Metal-halide lasers, MICOM, Moss Vale, Multiple-prism beam expander, Multiple-prism dispersion theory, Multiple-prism grating laser oscillator, Multiple-prism near-grazing-incidence grating oscillator, N-slit interferometer, N-slit interferometric equation, Nano, Nanogods, Nanoparticle gain medium, Negative entropy, Optical Society of America, Optics, Opticks, Pam-Am, Patents, Pentagon, Photodynamic therapy, Photographic Research Laboratories, Photography, Photon, Planck’s energy, Polarization rotator, Prism pulse compression, Quantum electrodynamics, Quantum mechanics, Quantum interpretation, Quantum notation, Quantum optics, Quantum probability amplitude, Raytheon, Reality, Religion, Renormalization theory, Reorganization, Ruggedized narrow-linewidth dye laser oscillator, Samurai, Santiago, School of Mathematics and Physics, Scientifically challenged, SDI, Single photon interference, Soccer, Solid-state organic laser, Special relativity, Standard Model, Strathfield, Students for a Science Degree (SSD), Sydney, Transformation, Tunable Laser Applications, Tunable Laser Handbook, Tunable Laser Optics, Tunable lasers, Tunable laser oscillator, Uncertainty principle, Uranium, Ward Identities

Page published on the 13th of May, 2012; Updated on the 27th of August, 2023