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A succinct introduction to the various interference, diffraction, dispersion, and linewidth 
equations necessary to predict the coherence properties of narrow-linewidth tunable 
lasers is given.  The quantum mechanical origin of the cavity linewidth equation, 
diffraction, refraction (Snell’s law), and reflection, is also referenced. 
 
 
1. Introduction 
 
 
The equations included here form the theory that is applied in the design of practical 
high-power tunable laser oscillators regardless of the type of gain media.  In other words, 
the theory applies for lasers using tunable gain media in the gas, the liquid, or the solid-
state. These equations can be used to either predict the value of  real measurable variables 
in laser physics or, alternatively, they can be used to explain the value of measured 
parameters such as laser beam divergence (Δθ ) and laser linewidth (Δν).   Both these 
parameters are essential to determine and characterize the coherence of a laser. 
 
The introduction to this subject, given here, is backwards to the chronological 
development of the physics.  But that should not be surprising since, after all, Dirac’s 
notation is backwards.  The readers should be aware that not all the terms might be 
explained here and that consultation with the original references is necessary.   All these 
equations are explained in detail, with the necessary geometry and schematics, in Tunable 
Laser Optics.1    
 
 
2. Generalized Dirac interference equations: interferometric quantum origin  
    of the linewidth equation and the uncertainty principle 
 
 
The generalized probability distribution for propagation from a source s to an 
interferometric plane x, is given by1,2 
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This equation applies either to the propagation of a single photon or to the propagation of 
a large number of indistinguishable photons, as in the case of laser radiation.3,4 In one 
dimension this equation reduces to4,5 
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In this equation it is the cosine term that contains all the information about the geometry 
and the wavelength of the emission.1-6   This interference equation has been shown to 
predict measured interferometric distributions either in the near or the far field.1-5   Also, 
it can be used to predict diffraction profiles due to transmission via single-slits.   This is 
done by dividing the single slit into a large number of imaginary sub slits.1, 2, 4, 5    Further 
uses of this equation include the derivation of the linewidth cavity equation via quantum 
principles1, 6 
 
 
 
                                                      1)/( −∂∂Δ≈Δ λθθλ                                                      (3) 
 
 
that can also be expressed as7 
 
 
                                                         1)( −∇Δ≈Δ θθλ λ                                                       (4) 
 
 
This equation contains all the essential information necessary to design narrow-linewidth 
tunable lasers.  This equation tells us that the linewidth of a pulsed laser is directly 
proportional to its beam divergence (Δθ) and inversely proportional to the intracavity 
dispersion )( θλ∇ .   For the case of a laser cavity including a multiple-prism grating 
assembly the multiple return-pass linewidth is given by1, 8  
 
 
                                             ( ) 1−Φ∇+Θ∇Δ=Δ PGR RMR λλθλ                                       (5) 
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where M is the intracavity beam expansion, R is the total number of return passes to the 
onset of laser emission,  GΘ∇λ  is the dispersion of the grating, PΦ∇λ  is the double-pass 
prismatic dispersion, and9 
 
 
                                 ( ) 2/122 )/()/(1)/( RRRR BLABLw RR ++=Δ πλθ                             (6) 
 
 
is the generalized expression for the beam divergence which is a function of the Rayleigh 
length and  propagation matrix terms. 
 
Equation (4) also explains the physics behind femtosecond, or ultrafast, lasers.  In that 
case the intracavity dispersion is reduced to a minimum thus allowing for broadband 
emission and hence, via the uncertainty principle, to ultrashort pulse emission.1   At this 
stage it is appropriate to indicate that the interferometric equation (Eq. (2)) can be used to 
yield an approximate derivation1 of  Heisenberg’s uncertainty principle10-12 
 
 
                                                              hpx ≈ΔΔ                                                              (7) 
 
 
which, in turn, can be used to derive an expression for the diffraction limit of beam 
divergence1, 13  
 
 
                                                           wπλθ /≈Δ                                                             (8) 
 
 
where w is known as the beam waist.  This is the minimum expression for beam 
divergence under ideal conditions.  In practical lasers, as depicted in Eq. (6), this 
expression is multiplied by the square root of a series of terms derived from the geometry 
of the resonator1   Under ideal circumstances that term reduces to  ~ 1.    
 
Thus we have described, very succinctly , how generalized interferometic equations 
derived using the Dirac notation can be used to yield all the fundamental concepts 
necessary to design narrow-linewidth tunable laser oscillators and femtosecond, or 
ultrafast, lasers .  Further, this approach has been used to provide a unified quantum 
description of optics in the following order: interference, diffraction, refraction (Snell’s 
law), and reflection.1, 3, 5   Next we consider the dispersion term in the linewidth equation. 
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3. Generalized multiple-prism grating dispersion equations 
 
 
The subject of multiple-prism dispersion was first discussed, in a qualitative manner, by 
Newton in his prophetic book Opticks.14  Subsequently,  Brewster described the use of 
prism pairs.15   However, a generalized mathematical  description of multiple-prism beam  
expanders and their dispersion was only made available following the event of the 
tunable laser.16   Detailed reviews on this subject are given elsewhere.17-20  Also, the 
quantum origin of refraction has been described elsewhere.5, 21    Briefly, using the law 
refraction (Snell’s law) as a staring point, for a multiple-prism array, the cumulative 
single-pass dispersion at the mth prism is given by 1, 16-20  
 
 

                                           ( ))1(,2,1
1
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this is a recursive function that depends on the dispersion of the previous prism 
(m −1) and where the k1,m term, for instance, refers to the beam expansion undergone by 
the light beam following incidence on the first surface of the mth prism.  Also, nm is the 
refractive index of the mth prism and  m,1H , m,2H  are additional geometrical terms 
defined in the references.   An explicit equation for the double-pass intracavity 
dispersion, including terms describing the overall beam expansion M1 and M2,  is given 
by19 
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for identical prisms deployed at Brewster’s angle of incidence this equation reduces to 
the succinct expression19 
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Now, going back to the issue of pulse compression: a proper discussion of this 
phenomenon requires a mathematical description of both the first order dispersion mn ,2φ∇  
and the second order dispersion1, 22 
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Further, it should be mentioned that multiple-prism arrays were first described in matrix 
form in 1989.23 It should also be mentioned that the generalized beam expansion 
coefficient and dispersion, can be integrated as components of  44×  propagation 
matrices as described elsewhere.1, 24 
 
In order to include the case of negative refraction in the generalized dispersion 
description Eq. (9) takes the more general form of21 
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where the signs in parenthesis refer to the geometrical configuration whilst the simple  
± refers to either positive (+) or negative (−) refraction. 
 
Albeit substantial progress had been made towards the mathematical/theoretical 
representation of the generalized multiple-prism dispersion16, 22 complete access to higher 
phase derivatives has only recently been granted    For instance, the 5th derivative of the 
generalized multiple-prism refraction, or the 4th derivative of the generalized multiple-
prism dispersion, is elegantly given by25  
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In this most current extension to the generalized multiple-prism dispersion theory a clear 
and elegant mathematical framework is provided to express, at will, any higher 
derivatives up to the Nth order.25   In reference to Eq. (14), for instance, the keen observer 
can recognize , from the second to the fifth term, the elements of Pascal’s triangle for the 
power of 4.    
 
 
 
 
References 
 
 

1. F. J. Duarte, Tunable Laser Optics (Elsevier Academic, New York, 2003). 
2. F. J. Duarte, Interferometric imaging, in Tunable Laser Applications, F. J. Duarte 

(Ed.) (Marcel-Dekker, New York, 1995) pp. 153-178. 
3. F. J. Duarte, Comment on "Reflection, refraction, and multislit interference," Eur. 

J. Phys. 25, L57-L58 (2004). 
4. F. J. Duarte, On a generalized interference equation and interferometric 

measurements, Opt. Commun. 103, 8-14 (1993). 
5. F. J. Duarte, Interference, diffraction, and refraction, via Dirac's notation, Am. J. 

Phys. 65, 637-640 (1997). 
 



F. J. Duarte (2005)            www.opticsjournal.com/equationsintunablelaseroptics.pdf                                  7 
 
 

6. F. J. Duarte, Cavity dispersion equation 1)/( −∂∂Δ≈Δ λθθλ : a note on its origin, 
Appl. Opt. 31, 6979-6982 (1992). 

7. F. J. Duarte, Multiple-prism arrays in laser optics, Am. J. Phys. 68, 162-166 
(2000). 

8. F. J. Duarte and J. A. Piper, Multi-pass dispersion theory of prismatic pulsed dye 
lasers, Optica Acta 31, 331-335 (1984). 

9. F. J. Duarte, Multiple-return-pass beam divergence and the linewidth equation, 
Appl. Opt. 40, 3038 - 3041 (2001). 

10. W. Heisenberg, Über den anschaulichen inhalt der quantentheoretischen 
kinematik und mechanic, Zeitschrift für Physik 43, 172-198 (1927). 

11. P. A. M. Dirac, The Principles of Quantum Mechanics (Oxford, London, 1978). 
12. R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, 

Vol. III (Addison Wesley, Reading, 1965). 
13. P. N. Everett, Flashlamp-excited dye lasers, in High Power Dye Lasers, F. J. 

Duarte (Ed.) (Springer, Berlin, 1991) pp. 183-245. 
14. I. Newton, Optiks (Royal Society, London, 1704). 
15. D. Brewster, A treatise on New Philosophical Instruments for Various Purposes 

in the Arts and Sciences with Experiments on Lights and Colours (Murray and 
Blackwood, Edinburgh, 1813). 

16. F. J. Duarte and J. A. Piper, Dispersion theory of multiple-prism beam expander 
for pulsed dye lasers, Opt. Commun. 43, 303-307 (1982). 

17. F. J. Duarte and J. A. Piper, Generalized prism dispersion theory, Am. J. Phys. 51, 
1132-1134 (1983). 

18. F. J. Duarte, Note on achromatic multiple-prism beam expanders, Opt. Commun. 
53, 259-262 (1985). 

19. F. J. Duarte, Narrow-linewidth pulsed dye laser oscillators, in Dye Laser 
Principles, F. J. Duarte and L. W. Hillman (Eds.) (Academic, New York, 1990) 
pp. 133-183. 

20. F. J. Duarte, Newton, prisms, and the opticks of tunable lasers, Optics & 
Photonics News 11 (5), 24-28 (2000).  

21. F. J. Duarte, Multiple-prism dispersion equations for positive and negative 
refraction, Appl. Phys. B 82, 35-38 (2006). 

22. F. J. Duarte, Generalized multiple-prism dispersion theory for pulse compression 
in ultrafast dye lasers, Opt. Quantum Electron. 19, 223-229 (1987). 

23. F. J. Duarte, Ray transfer matrix analysis of multiple-prism dye laser oscillators, 
Opt. Quantum Electron. 21, 47-54 (1989). 

24. F. J. Duarte, Multiple-prism dispersion and 44×  ray transfer matrices, Opt.       
Quantum Electron. 24, 49-53 (1992). 

25. F. J. Duarte, Generalized multiple-prism dispersion theory for laser pulse 
compression: higher order phase derivatives, Appl. Phys. B 96, 809-814 (2009).  

 
 
                 Published at www.opticsjournal.com on the  2005/03/15 and updated on 2011/11/30 


